alicat質(zhì)量流量計采用一個恒流源(恒壓源)對熱源加熱,流體流動使兩個鉑電阻的溫度不同。鉑電阻連接在惠斯通電橋中,鉑電阻的溫度不同使鉑電阻的電阻呈現(xiàn)不同阻值,從而使電橋不平衡,通過檢測電橋的電壓來反應(yīng)流體流量。
現(xiàn)從傳熱學(xué)角度對該傳感器原理作進一步的分析。假定流體為均勻分布的牛頓型流體,以一維測量為例:
熱源R置于傳感器基片的中心,在其兩邊對稱地放置兩個*相同的溫度檢測芯片(薄膜式鉑電阻)S1和S2傳感器與流體之間的熱交換主要通過對流進行,熱源與溫度檢測芯片之間的熱交換可通過傳導(dǎo)和對流進行。
當流體流速為零,即當流體處于靜止狀態(tài)時,表面附近的流線場及主要由此產(chǎn)生的溫度場相對于熱源呈對稱分布。
由于結(jié)構(gòu)上的對稱性,通過基片熱傳導(dǎo)進行的熱交換相對于熱源始終是對稱的。
此時感溫芯片的鉑電阻溫度滿足TS1=TS2,即溫差:ΔT21=TS2-TS1=0。
當流體流動時,流體和鉑電阻之間主要為對流換熱,由于局部對流換熱系數(shù)的不同,基片表面附近的流線場及相應(yīng)的溫度場相對于中心熱源的分布發(fā)生變化,導(dǎo)致傾向性的不對稱分布。
根據(jù)alicat質(zhì)量流量計熱邊界層理論,可知,此時上游溫度檢測芯片表面冷卻速率高于下游芯片表面;
即鉑電阻S1的換熱系數(shù)大于S2是換熱系數(shù),所以TS2>TS1,溫差溫度差:ΔT21=TS2-TS1>0。
且ΔT21的值隨流體流速的增大而增大。如果改變流體流向,ΔT21亦相應(yīng)改變符號。
利用熱平衡方程可以計算出因?qū)α饕鸬男酒砻娴臏囟仍俜植?,獲得溫度差與流速的關(guān)系式。